
1-4244-0220-4/$20.00© 2006 IEEE.

Network Intrusion Detection Based on Neuro-Fuzzy
Classification

Adel Nadjaran Toosi

Communication and Computer
Research Laboratory, Faculty

of Engineering, Ferdowsi
University of Mashhad

ad_na85@stu-mail.um.ac.ir

Mohsen Kahani
Computer Department, Faculty

of Engineering, Ferdowsi
University of Mashhad

kahani@um.ac.ir

Reza Monsefi
Computer department, Faculty

of Engineering, Ferdowsi
University of Mashhad

rmonsefi@um.ac.ir

Abstract-With1rapid growth of computer networks during the
past few years, network security has become a crucial issue.
Among the various network security measures, intrusion detection
systems (IDS) play a vital role to integrity, confidentiality and
availability of resources. It seems that the presence of uncertainty
and the imprecise nature of the intrusions make fuzzy systems
suitable for such systems. Fuzzy systems are not normally
adaptive and have not the ability to construct models solely based
on the target system's sample data. One of the successful
approaches which are incorporated fuzzy systems with adaptation
and learning capabilities is the neural fuzzy method. The main
objective of this work is to utilize ANFIS (Adaptive Neuro Fuzzy
Inference System) as a classifier to detect intrusions in computer
networks. This paper evaluates performance of ANFIS in the
forms of binary and multi-classifier to categorize activities of a
system into normal and suspicious or intrusive activities.
Experiments for evaluation of the classifiers were performed with
the KDD Cup 99 intrusion detection dataset. The Overall Results
show that ANFIS can be effective in detecting various intrusions.

Keyword-Intrusion Detection, KDD dataset, Computer network
Security, ANFIS, Neuro-Fuzzy classifier.

I. INTRODUCTION

During the past few years, the numbers of intrusions in computer
networks have grown extensively, and many new hacking tools and
intrusive methods have appeared. Using an intrusion detection system
(IDS) is one way of dealing with suspicious activities within a
network [1].

Soft computing and machine learning approaches have
demonstrated their abilities in IDS, and there are continual interests in
utilizing them in such systems [1] [2] [3] [4]. Fuzzy logic as a robust
artificial intelligent method has been successfully employed for many
IDSs [2] [3] [5] [6] [7].

Most Fuzzy systems make use of human expert knowledge to
create their fuzzy rule base and hence, lack adaptation. However,
elicitation of fuzzy rules from experts is usually difficult. Therefore,
building fuzzy systems with learning and adaptation capabilities has
recently gained much attention. Various methods have been suggested
for automatic generation and adjustment of fuzzy rules without using
aid of human experts; the neural fuzzy [8] [9] and genetic fuzzy [10]
[11] are two most successful approaches in this regard.

From the classification point of view, the main work of building an
IDS is to build a classifier which can categorize normal and intrusive
event data from the original dataset. ANFIS can incorporate human

This work was partially supported by the Iran Telecommunication

Research Center (ITRC).

expertise as well as adopt itself through repeated training. This ability
among others qualifies ANFIS as a fuzzy classifier for IDS [8].

In order to promote the comparison of different works in IDS area,
the Lincoln Laboratory at MIT, under the Defense Advanced
Research Project Agency (DARPA) and Air Force Research
Laboratory (AFRL/SNHS) sponsorship, constructed and distributed
the first standard dataset for evaluation of computer network IDS
[12].

The fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining collected and generated TCP dump data
provided by the aforementioned DARPA in the form of train-and-test
sets of features defined for the connection records (a connection is a
sequence of TCP packets starting and ending at some well-defined
times) which we name them as KDD cup 99 dataset [13] and will use
it for our experiments.

Intrusion detection as a classifier mainly consists of two processes;
training the classifier from a training dataset and using this classifier to
categorize a test dataset. Hereby, we made use of neuro-fuzzy
classifiers to detect intrusions in computer networks based on KDD
cup 99 datasets.

The subsequent parts of this paper are organized as follows: Section
2 describes KDD Cup 99 dataset on which our experiments are
conducted. Then the next section briefly outlines the basics of
neuro-fuzzy concepts in general and ANFIS particularly. The
proposed system and experimental results are discussed in sections 3
and 4, respectively. Finally, section 6 makes some concluding
remarks and recommends areas for future research.

II. KDD CUP 99 DATA SET

The KDD cup 99 dataset includes a set of 41 features derived for
each connection and a label which specifies the status of connection
records as either normal or specific attack type. These features had all
forms of continuous, discrete, and symbolic, with significantly
varying ranges and fall in four categories [13]:
• The intrinsic features of a connection, which includes the basic
features of individual TCP connections. For example, duration of the
connection, the type of the protocol (tcp, udp, etc), network service
(http, telnet, etc), etc.
• The content feature within a connection suggested by domain
knowledge is used to assess the payload of the original TCP packets,
such as number of failed login attempts.
• The same host features examine established connections in the
past two seconds that have the same destination host as the current
connection, and calculate statistics related to the protocol behavior,
service, etc.

• The similar same service features which examine the connections
in the past two seconds that have the same service as the current
connection.

The data set encompasses different attack types, grouped into one
of the four categories [13]:
• Probe: Host and port scans as precursors to other attacks. An
attacker scans a network to gather information or find known
vulnerabilities, e.g., port sweep.
• Dos (Denial of Service): Making some computing or memory
resources too busy so that they deny legitimate users access to these
resources, e.g., smurf.
• R2L (Root to Local): Unauthorized access from a remote
machine according to exploit machine's vulnerabilities, e.g., imap.
• U2R (User to Root): Unauthorized access to local super user
(root) privileges using system's susceptibility, e.g., buffer overflow.

Total number of connection records in training data set is about half
a million records. This is far too large for our purposes; as such, only a
subset of 10% data was employed here. The distribution of normal
and attack types of connection records in this subset have been
summarized in Table I.

The test data enjoys a different distribution; moreover, the test data
includes additional attack types not present in the training data. This
property of test makes classifying more challenging. Table II
summarizes the distribution of normal and attack types of connection
records in this test dataset.

TABLE I
DISTRIBUTION OF SAMPLES ON THE SUBSET OF 10% DATA OF KDD CUP 99

Class number of Samples Samples Percent
Normal 97277 19.69%
Probe 4107 0.83%
Dos 391458 79.24%
U2R 52 0.01%
R2L 1126 0.23%
Total 492021 100%

TABLE II
DISTRIBUTION OF SAMPLES ON THE TEST DATASET OF KDD CUP 99
Class Number of Samples Samples Percent

Normal 60593 19.48%
Probe 4166 1.34%
Dos 229853 73.90%
U2R 228 0.07%
R2L 16189 5.20%
Total 311021 100%

III. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS

The past few years have witnessed a rapid growth in the number
and variety of applications of fuzzy logic. Among various
combinations of methodologies in soft computing, the one that has the
highest visibility at this time is that of fuzzy logic and
neurocomputing, leading to the so-called neuro-fuzzy systems. An
effective method developed by Jang for this purpose is called ANFIS
(Adaptive Neuro-Fuzzy Inference System) [8].

The rest of this section discusses the ANFIS structure as a class of
adaptive network that is functionally equivalent to the Sugeno Fuzzy
Inference Systems. There are some modeling situations in which one
cannot just look at the data and distinguish what the Membership
Functions (MFs) should look like. Rather than choosing the

parameters associated with a given MF arbitrarily, these parameters
could be chosen such that they tailor the MFs to the input/output data
in order to account for these types of variations in the data values. This
is where the so-called neuro-adaptive learning technique incorporated
into ANFIS can help.

Assume a fuzzy inference system with two inputs x, y and one
output z with the first order of Sugeno Fuzzy Model. Fuzzy rule set
with two fuzzy if-then rules are as follows:

If x is A1 and y is B1, then f1=p1x+q1y+r1.
If x is A2 and y is B2, then f2=p2x+q2y+r2.

Figure 1 (a) illustrates the reasoning mechanism for this Sugeno
Model. As it is shown in Figure 1(b), we can implement the reasoning
mechanism into a feed forward neural network with supervised
learning capability, which is known as ANFIS architecture.

The square and circle nodes are for adaptive nodes with parameters
and fixed nodes without parameters, respectively. The first layer
consists of square nodes that perform fuzzification with chosen MF.
The parameters in this layer are called premise parameters. In the
second layer, the t-norm operation is performed to produce firing
strength of each rule. The ratio of ith rule firing strength to the sum of
all rules’ firing strength is calculated in the third layer, generating the
normalized firing strengths. The fourth layer consists of square nodes
that perform multiplication of normalized firing strength with the
corresponding rule. The parameters in this layer are called consequent
parameters. The overall output is calculated by the sum of all
incoming signals in the fifth layer [8].

ANFIS provides a method for the fuzzy modeling procedure to
learn information about a dataset, in order to compute the MF
parameters that best allow the associated fuzzy inference system to
track the given input/output data. This learning method works
similarly to that of neural networks.

The parameters associated with the MFs will change through the
learning process. ANFIS uses either back propagation or a
combination of least square estimations and back propagation for MF
parameter estimations. The readers are referred to [8] for more details
on these methods.
Before we start the ANFIS training, we need to generate our Fuzzy
Inference System (FIS). FIS generation can implement in grid
partitioning or subtractive clustering. In grid portioning, all the
possible rules are generated based on the number of MFs for each
input. For example in a two dimensional input space, with three MFs
in the input sets, the number of rules in grid partitioning will result in 9
rules. This partitioning strategy needs only a small number of MFs for
each input and it encounters problems when we have moderately large
number of inputs. So subtractive clustering has been used to determine
the number of rules, the MFs and their initial points [14]. It is an
extension of the Mountain Clustering Method proposed by
Yager [15]. The clusters’ information obtained by this method is
used for determining the initial number of rules and antecedent MFs.

An important advantage of using a clustering method to find rules
is that the resultant rules are more tailored to the input data than they
are in a FIS generated without clustering. In this study, we use
subtractive clustering to determine the number of rules and antecedent
MFs. Then ANFIS is applied for further fine-tuning of the MFs.

Fig. 1. (a) The Sugeno fuzzy model reasoning (b) Equivalent ANFIS structure [8]

IV. PROPOSED METHOD

This Section will elaborate methodology employed to training
neuro-fuzzy classifiers. Classification basically consists of two
processes, which are training the parameters of the classifier from a
training dataset and using this classifier to categorize a test dataset.

A. Preprocessing

As it was mentioned earlier, the 41 features in the KDD cup 99
dataset had all forms of continuous, discrete, and symbolic, with
significantly varying resolution and ranges [13]. Pattern classification
methods are not able to process data in such format. Here,
preprocessing involved mapping symbolic valued attributes to
numeric ones. Symbolic features like protocol_type, service and flag
were mapped to integer values ranging from 0 to N-1 where N is the
number of symbols. For example protocol_type feature with three
different symbols namely TCP, UDP, ICMP were appropriately
mapped to three discrete numeric values 0, 1 and 2. All the other
features were either discrete or continuous used as the original forms.

B. Classifiers Structure

We used all the above features as the inputs of our neuro-fuzzy
classifiers. This paper utilizes ANFIS in two form of binary and
multi-classifier to classify activities of a system into normal and
suspicious or intrusive activity.

In binary classification, the classifier model has been trained with
training dataset were labeled to one of the two classes, 0 for normal
and 1 for attack. Unlike the binary classifier, attacks in training dataset
for multi-classifier were mapped to one the five classes, 0 for normal,
1 for Probe, 2 for Dos, 3 for U2R, and 4 for R2L.

48840 randomly selected points form the subset of 10% of data is
used as training dataset and 4884 records of data which does not
overlap with training set dataset, selected as the checking data (used
for validating the model) for both the binary and multi-classifiers.

The basic idea behind using a checking dataset for model validation
is that after a certain point in training, the model begins overfitting the

training dataset. If overfitting does occur, we cannot expect the
classifier to respond well to other independent datasets. If checking
data is used for ANFIS training, the final FIS that is associated
with the minimum checking error will be chosen.

Table III summarizes the distribution of the samples in the Training
and Checking dataset for the binary and the multi-classifier.

Afterward, subtractive clustering method with neighborhood radius
equal to 0.5 has been chosen to partition the training data to generate
an FIS structure. All the input MFs are the Gaussian function which
are specified by four parameters. Then for further fine-tuning and
adaptation of the MFs, training dataset was used for training ANFIS,
while the checking dataset was used for validating the model
identified. The ANFIS architecture used is equivalent to Sugeno
Fuzzy Model and is the same structure as the one that has been
explained in section 3.

The ANFIS used for the binary classification contains 380 nodes
and a total number of 496 fitting parameters, of which 328 are premise
parameters and 168 are consequent parameters. The average RMSE
(Root Mean Squared Error) for the training and checking dataset of
binary classifier after 50 epochs of learning is 2349.74 and 0.207448,
respectively. ANFIS used for multi classification hold 328 premise
parameters and 168 consequent parameters and the RMSE for the
training and checking dataset after 50 epochs of learning is 10164.7
and 0.264419, respectively, too. It is unusual to observe that RMSE
for the training data is larger than the checking data during the training
process, as is the case here. It seems that it is the result of many
differences between the number of training and checking samples and
also the loss of training epochs. As it has been previously mentioned
in section 3, ANFIS structure has one output. In this paper, the ANFIS
output specifies the class number of the 41 input featured vector. The
output of each ANFIS is not necessarily an integer as the class
number. For this reason, we need to gain an approximate class
number by rounding off the given number. Γ is the parameter for
rounding off, which gives us the integer value. Output will be rounded
based on Γ, which gives us an integer value. If it is equivalent to one
of the attack's class numbers, then the current connection record is

classified as an attack, otherwise the related connection will be
assumed as normal record. Below, we will investigate the effect of Γ
on the performance evaluation parameters.

TABLE III
DISTRIBUTION OF SAMPLES ON THE TRAINING AND CHECKING DATA

RANDOMLY SELECTED OF 10% DATA OF KDD CUP 99 DATASET FOR THE
CLASSIFIERS

Binary Classifier Multi-Classifier
Class

Training Checking Training Checking

Normal 25000 2500 25000 2500

Dos 20000 2000 20000 2000

U2R 40 4 40 4

R2L 800 80 800 80

PROBE 3000 300 3000 300

 48840 4884 48840 4884

C. Performance Comparison Measures

Standard metrics that were developed for evaluating network
intrusion detections are detection rate and false alarm rate. Detection
rate is computed as the ratio of the number of correctly detected
attacks to the total number of attacks, while false alarm (false positive)
rate is computed as the ratio of the number of normal connections
(that is incorrectly misclassified as attacks) to the total number of
normal connections.

Table IV shows detection rate and false alarm rate based on binary
and multi-classifier for training and checking data after 50 epoch of
training with Γ = 0.5.

TABLE IV
FALSE ALARM RATE AND DETECTION RATE S FOR THE TRAINING AND

CHECKING DATA
Classifier Data False Alarm Rate% Detection Rate%

Training 0.17 96.50 Binary
Classifier Checking 0.08 96.64

Training 5.63 98.43 Multi
Classifier Checking 3.64 99.41

V. RESULTS

Two different classifiers have been used in this work.
TABLE V shows the notation used here after.

TABLE V
ABBREVIATIONS USED FOR OUR APPROACHES

Abbreviation Approach

B-NFC Binary Neuro-Fuzzy Classifier

M-NFC Multi Class Neuro-Fuzzy Classifier

Two different types of experiments have been performed here; in

the first experiment all the records of labeled test dataset (known as
corrected label dataset) were used as the testing data to evaluate our
classifiers. The results are shown in Table VI. As it can be seen, our
classifiers has a good performance at intrusion detections with
approximately low false alarm rate, although only we have only used
about fifty thousand records of 10% of the dataset. It is important to
mention that unlike the methods of comparison in the quoted
references, here, our test data in the current experiment contains new
attacks which were not present in the training dataset. In the second

experiment, we randomly selected 40000 sampled connections from
the source of the training dataset. To reduce the effects due to random
sampling, five trails, that does not overlap neither with training set nor
each others, have been carried out and average of the resulting value
over 5 trials have been computed.

TABLE VI
FALSE ALARM RATE AND DETECTION RATE S FOR THE TEST DATA OF THE FIRST

EXPRIMENT
Classifier False Alarm Rate (%) Detection Rate (%)
B-NFC 0.3 89.43
M-NFC 3.4 91.14

We compare our classifiers with two different fuzzy algorithms'

performances proposed in [5] and [2]. Also different algorithms'
performance exploit at the above papers has been referenced here
again [16] [17].

Our classifier demonstrates better performance in reducing false
alarm rate and increasing detection rate. Based on the results shown in
the TABLE VII, it can be easily seen that our approach has an overall
better performance than the other methods.

In the rest of this section, we have applied the Receiver Operating
Characteristic (ROC) analysis to evaluate the performance of our
classifiers with respect to parameter Γ. To generate the ROC curve,
we changed Γ to a value between 0 and 0.5 and plotted coordinate
point (FA, DR)Γ, where FA is the false alarm rate and DR is the
detection rate [2]. Figure 2 displays ROC curve for the classifiers
which has been used here with respect to Γ.

The ROC curve can be used to determine when a classifier has
good performance. For each curve, the point at the upper left corner
represents the optimal detection with high detection rate and low false
alarm rate [4]. If the ROC curve of a classifier 'A' dominates the
classifier 'B' then classifier 'A' is better than classifier 'B'. The ROC
curve for the proposed neuro-fuzzy classifiers shows how the
parameter Γ affects the false alarm rate and detection rate.

VI. CONCLUSION

In this paper, we have applied ANFIS as a neuro-fuzzy classifier to
the intrusion detection methods. Subtractive clustering determines the
number of rules and MFs with their initial locations. The method used
here is capable of producing fuzzy rules without the aid of human
experts. Results of experiments show that these fuzzy rules are
effective for detecting intrusion in a computer network. Also results
illustrate the suggested that ANFIS is more appropriate as a binary
classifier rather than a multi-classifier one.

Our future work will focus on reducing fuzzy input variables by
methods of feature selection.

VII. ACKNOWLEDGMENT

The first author would like to thank FUM Communication
and Computer Research Laboratory for their in-kind support
and encouragement during this research. He also wishes to
express his appreciations to the helpful suggestions and
comments of his colleagues E. Bagheri, M. Amini.

TABLE VII
FALSE ALARM RATE, DETECTION RATE AND COMPLEXITY OF DIFFRENET APPROACHES
Classifier False Alarm Rate (%) Detection Rate (%) Complexity
B-NFC 0.13 99.60 O(n)

M-NFC 4.61 99.90 O(n)

SRPP [5] 3.58 99.08 O(n)

EFRID [2] 7 98.96 O(n)

RIPPER [16] 2.02 94.26 O(n × log2n)

SMARTSIFTER[17] - 82 O(n2)

Fig. 2. ROC curve for the Neuro-Fuzzy classifiers; 0 ≤ Γ ≤ 0.5

REFERENCES

[1] D. Song, M.I. Heywood, A.N. Zincir-Heywood, “Training
Genetic Programming on Half a Million Patterns: An
Example from Anomaly Detection,” IEEE Transactions on
Evolutionary Computation, 2005.

[2] J. Gomez, D. Dasgupta, “Evolving Fuzzy Classifiers for
Intrusion Detection,” Proceeding Of 2002 IEEE Workshop
on Information Assurance, United States Military
Academy, West Point NY, June 2001.

[3] S. Chavan, K. Shah, N. Dave, S. Mukherjee, A. Abraham
and S. Sanyal, “Adaptive Neuro-Fuzzy Intrusion Detection
System,” IEEE International Conference on Information
Technology: Coding and Computing (ITCC' 04), USA,
IEEE Computer Society, Vol. 1, pp. 70-74, 2004.

[4] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson and J.
Ucles, “HIDE: a Hierarchical Network Intrusion Detection
System Using Statistical Preprocessing and Neural
Network Classification,” Proceedings of the 2nd Annual
IEEE Systems, Mans, Cybernetics Information Assurance
Workshop, West Point, NY, 2001.

[5] M. S. Abade, J. Habibi, C. Lucas, “Intrusion detection
using a fuzzy genetics-based learning algorithm,” Journal
of Network and Computer Applications, August 2005.

[6] J. E. Dickerson, J. E. Dickerson, “Fuzzy network profiling
for intrusion detection,” Proceedings of NAFIPS 19th
International Conference of the North American Fuzzy

Information Processing Society, pp. 301-306, Atlanta,
USA, July 2000.

[7] M. Gao, M. C. Zhou, “Fuzzy intrusion detection based on
fuzzy reasoning Petri nets,” Proceeding of the 2003 IEEE
International Conference on Systems, Man and
Cybernetics, 5-8, pp. 1272-1277, Washington D. C., Oct.
2003.

[8] J.-S. R. Jang, “ANFIS: Adaptive-Network-based Fuzzy
Inference Systems,” IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 23, No. 3, pp. 665-685, May 1993.

[9] D. Nauck, R. Kruse, “NEFCLASS - A Neuro-Fuzzy
approach for the classification of data,” presented at the
Symposium on applied Computing, Nashville, USA, 1995.

[10] H. Ishibuchi, T. Nakashima, T. Murata, “A fuzzy classifier
system that generates fuzzy if–then rules for pattern
classification problems,” Proceedings of second IEEE
international conference on evolutionary computation,
Perth, Australia, November, pp. 759–64, 1995.

[11] J. Liu, J. Kwok, “An extended genetic rule induction
algorithm,” Proceedings of the Congress on Evolutionary
Computation Conference, 2000.

[12] DARPA Intrusion Detection Evaluation:
http://www.ll.mit.edu/SSt/ideval/result/result_index.html.

[13] KDD Cup 1999 Intrusion detection dataset:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[14] S. Chiu, “Fuzzy Model Identification Based on Cluster
Estimation,” Journal of Intelligent & Fuzzy Systems, Vol.
2, No. 3, September. 1994.

[15] R. Yager, D. Filev, “Generation of Fuzzy Rules by
Mountain Clustering,” Journal of Intelligent & Fuzzy
Systems, Vol. 2, No. 3, pp. 209-219, 1994.

[16] W. Fan, M. Miller, SJ. Stolfo, Chan PK. “Using artificial
anomalies to detect unknown and know network
intrusions,” Proceedings of the first IEEE international
conference on data mining, 2001.

[17] K. Yamanishi, J. Takeuchi, G. Williams, “On-line
unsupervised outlier detection using finite mixtures with
discounting learning algorithms”, Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 320-324, 2000.

