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Abstract-With1rapid growth of computer networks during the 
past few years, network security has become a crucial issue. 
Among the various network security measures, intrusion detection 
systems (IDS) play a vital role to integrity, confidentiality and 
availability of resources. It seems that the presence of uncertainty 
and the imprecise nature of the intrusions make fuzzy systems 
suitable for such systems. Fuzzy systems are not normally 
adaptive and have not the ability to construct models solely based 
on the target system's sample data. One of the successful 
approaches which are incorporated fuzzy systems with adaptation 
and learning capabilities is the neural fuzzy method. The main 
objective of this work is to utilize ANFIS (Adaptive Neuro Fuzzy 
Inference System) as a classifier to detect intrusions in computer 
networks. This paper evaluates performance of ANFIS in the 
forms of binary and multi-classifier to categorize activities of a 
system into normal and suspicious or intrusive activities. 
Experiments for evaluation of the classifiers were performed with 
the KDD Cup 99 intrusion detection dataset. The Overall Results 
show that ANFIS can be effective in detecting various intrusions.  

Keyword-Intrusion Detection, KDD dataset, Computer network 
Security, ANFIS, Neuro-Fuzzy classifier. 

I. INTRODUCTION 

During the past few years, the numbers of intrusions in computer 
networks have grown extensively, and many new hacking tools and 
intrusive methods have appeared. Using an intrusion detection system 
(IDS) is one way of dealing with suspicious activities within a 
network [1].  

Soft computing and machine learning approaches have 
demonstrated their abilities in IDS, and there are continual interests in 
utilizing them in such systems [1] [2] [3] [4]. Fuzzy logic as a robust 
artificial intelligent method has been successfully employed for many 
IDSs [2] [3] [5] [6] [7]. 

Most Fuzzy systems make use of human expert knowledge to 
create their fuzzy rule base and hence, lack adaptation. However, 
elicitation of fuzzy rules from experts is usually difficult. Therefore, 
building fuzzy systems with learning and adaptation capabilities has 
recently gained much attention. Various methods have been suggested 
for automatic generation and adjustment of fuzzy rules without using 
aid of human experts; the neural fuzzy [8] [9] and genetic fuzzy [10] 
[11] are two most successful approaches in this regard. 

From the classification point of view, the main work of building an 
IDS is to build a classifier which can categorize normal and intrusive 
event data from the original dataset. ANFIS can incorporate human 
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expertise as well as adopt itself through repeated training. This ability 
among others qualifies ANFIS as a fuzzy classifier for IDS [8]. 

In order to promote the comparison of different works in IDS area, 
the Lincoln Laboratory at MIT, under the Defense Advanced 
Research Project Agency (DARPA) and Air Force Research 
Laboratory (AFRL/SNHS) sponsorship, constructed and distributed 
the first standard dataset for evaluation of computer network IDS 
[12].  

The fifth ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining collected and generated TCP dump data 
provided by the aforementioned DARPA in the form of train-and-test 
sets of features defined for the connection records (a connection is a 
sequence of TCP packets starting and ending at some well-defined 
times) which we name them as KDD cup 99 dataset [13] and will use 
it for our experiments. 

Intrusion detection as a classifier mainly consists of two processes; 
training the classifier from a training dataset and using this classifier to 
categorize a test dataset. Hereby, we made use of neuro-fuzzy 
classifiers to detect intrusions in computer networks based on KDD 
cup 99 datasets. 

The subsequent parts of this paper are organized as follows: Section 
2 describes KDD Cup 99 dataset on which our experiments are 
conducted. Then the next section briefly outlines the basics of 
neuro-fuzzy concepts in general and ANFIS particularly. The 
proposed system and experimental results are discussed in sections 3 
and 4, respectively. Finally, section 6 makes some concluding 
remarks and recommends areas for future research. 

II. KDD CUP 99 DATA SET 

The KDD cup 99 dataset includes a set of 41 features derived for 
each connection and a label which specifies the status of connection 
records as either normal or specific attack type. These features had all 
forms of continuous, discrete, and symbolic, with significantly 
varying ranges and fall in four categories [13]:  
• The intrinsic features of a connection, which includes the basic 
features of individual TCP connections. For example, duration of the 
connection, the type of the protocol (tcp, udp, etc), network service 
(http, telnet, etc), etc.  
• The content feature within a connection suggested by domain 
knowledge is used to assess the payload of the original TCP packets, 
such as number of failed login attempts. 
• The same host features examine established connections in the 
past two seconds that have the same destination host as the current 
connection, and calculate statistics related to the protocol behavior, 
service, etc.  



 
 

• The similar same service features which examine the connections 
in the past two seconds that have the same service as the current 
connection. 

The data set encompasses different attack types, grouped into one 
of the four categories [13]: 
• Probe: Host and port scans as precursors to other attacks. An 
attacker scans a network to gather information or find known 
vulnerabilities, e.g., port sweep. 
• Dos (Denial of Service): Making some computing or memory 
resources too busy so that they deny legitimate users access to these 
resources, e.g., smurf.  
• R2L (Root to Local): Unauthorized access from a remote 
machine according to exploit machine's vulnerabilities, e.g., imap. 
• U2R (User to Root): Unauthorized access to local super user 
(root) privileges using system's susceptibility, e.g., buffer overflow.  

Total number of connection records in training data set is about half 
a million records. This is far too large for our purposes; as such, only a 
subset of 10% data was employed here. The distribution of normal 
and attack types of connection records in this subset have been 
summarized in Table I.  

The test data enjoys a different distribution; moreover, the test data 
includes additional attack types not present in the training data. This 
property of test makes classifying more challenging. Table II 
summarizes the distribution of normal and attack types of connection 
records in this test dataset. 

TABLE I 
DISTRIBUTION OF SAMPLES ON THE SUBSET OF 10% DATA OF KDD CUP 99  

Class number of Samples Samples Percent 
Normal 97277 19.69% 
Probe 4107 0.83% 
Dos 391458 79.24% 
U2R 52 0.01% 
R2L 1126 0.23% 
Total 492021 100% 

TABLE II 
DISTRIBUTION OF SAMPLES ON THE TEST DATASET OF KDD CUP 99 
Class Number of Samples Samples Percent 

Normal 60593 19.48% 
Probe 4166 1.34% 
Dos 229853 73.90% 
U2R 228 0.07% 
R2L 16189 5.20% 
Total 311021 100% 

III. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS 

The past few years have witnessed a rapid growth in the number 
and variety of applications of fuzzy logic. Among various 
combinations of methodologies in soft computing, the one that has the 
highest visibility at this time is that of fuzzy logic and 
neurocomputing, leading to the so-called neuro-fuzzy systems. An 
effective method developed by Jang for this purpose is called ANFIS 
(Adaptive Neuro-Fuzzy Inference System) [8]. 

The rest of this section discusses the ANFIS structure as a class of 
adaptive network that is functionally equivalent to the Sugeno Fuzzy 
Inference Systems. There are some modeling situations in which one 
cannot just look at the data and distinguish what the Membership 
Functions (MFs) should look like. Rather than choosing the 

parameters associated with a given MF arbitrarily, these parameters 
could be chosen such that they tailor the MFs to the input/output data 
in order to account for these types of variations in the data values. This 
is where the so-called neuro-adaptive learning technique incorporated 
into ANFIS can help.  

Assume a fuzzy inference system with two inputs x, y and one 
output z with the first order of Sugeno Fuzzy Model. Fuzzy rule set 
with two fuzzy if-then rules are as follows: 

If x is A1 and y is B1, then f1=p1x+q1y+r1. 
If x is A2 and y is B2, then f2=p2x+q2y+r2. 

Figure 1 (a) illustrates the reasoning mechanism for this Sugeno 
Model. As it is shown in Figure 1(b), we can implement the reasoning 
mechanism into a feed forward neural network with supervised 
learning capability, which is known as ANFIS architecture. 

The square and circle nodes are for adaptive nodes with parameters 
and fixed nodes without parameters, respectively. The first layer 
consists of square nodes that perform fuzzification with chosen MF. 
The parameters in this layer are called premise parameters. In the 
second layer, the t-norm operation is performed to produce firing 
strength of each rule. The ratio of ith rule firing strength to the sum of 
all rules’ firing strength is calculated in the third layer, generating the 
normalized firing strengths. The fourth layer consists of square nodes 
that perform multiplication of normalized firing strength with the 
corresponding rule. The parameters in this layer are called consequent 
parameters. The overall output is calculated by the sum of all 
incoming signals in the fifth layer [8]. 

ANFIS provides a method for the fuzzy modeling procedure to 
learn information about a dataset, in order to compute the MF 
parameters that best allow the associated fuzzy inference system to 
track the given input/output data. This learning method works 
similarly to that of neural networks.  

The parameters associated with the MFs will change through the 
learning process. ANFIS uses either back propagation or a 
combination of least square estimations and back propagation for MF 
parameter estimations. The readers are referred to [8] for more details 
on these methods. 
Before we start the ANFIS training, we need to generate our Fuzzy 
Inference System (FIS). FIS generation can implement in grid 
partitioning or subtractive clustering. In grid portioning, all the 
possible rules are generated based on the number of MFs for each 
input. For example in a two dimensional input space, with three MFs 
in the input sets, the number of rules in grid partitioning will result in 9 
rules. This partitioning strategy needs only a small number of MFs for 
each input and it encounters problems when we have moderately large 
number of inputs. So subtractive clustering has been used to determine 
the number of rules, the MFs and their initial points [14]. It is an 
extension of the Mountain Clustering Method proposed by 
Yager [15]. The clusters’ information obtained by this method is 
used for determining the initial number of rules and antecedent MFs. 

An important advantage of using a clustering method to find rules 
is that the resultant rules are more tailored to the input data than they 
are in a FIS generated without clustering. In this study, we use 
subtractive clustering to determine the number of rules and antecedent 
MFs. Then ANFIS is applied for further fine-tuning of the MFs. 

 



 
 

 
Fig. 1. (a) The Sugeno fuzzy model reasoning (b) Equivalent ANFIS structure [8] 

IV. PROPOSED METHOD 

This Section will elaborate methodology employed to training 
neuro-fuzzy classifiers. Classification basically consists of two 
processes, which are training the parameters of the classifier from a 
training dataset and using this classifier to categorize a test dataset.  

A. Preprocessing 

As it was mentioned earlier, the 41 features in the KDD cup 99 
dataset had all forms of continuous, discrete, and symbolic, with 
significantly varying resolution and ranges [13]. Pattern classification 
methods are not able to process data in such format. Here, 
preprocessing involved mapping symbolic valued attributes to 
numeric ones. Symbolic features like protocol_type, service and flag 
were mapped to integer values ranging from 0 to N-1 where N is the 
number of symbols. For example protocol_type feature with three 
different symbols namely TCP, UDP, ICMP were appropriately 
mapped to three discrete numeric values 0, 1 and 2. All the other 
features were either discrete or continuous used as the original forms.  

B. Classifiers Structure 

We used all the above features as the inputs of our neuro-fuzzy 
classifiers. This paper utilizes ANFIS in two form of binary and 
multi-classifier to classify activities of a system into normal and 
suspicious or intrusive activity. 

In binary classification, the classifier model has been trained with 
training dataset were labeled to one of the two classes, 0 for normal 
and 1 for attack. Unlike the binary classifier, attacks in training dataset 
for multi-classifier were mapped to one the five classes, 0 for normal, 
1 for Probe, 2 for Dos, 3 for U2R, and 4 for R2L. 

48840 randomly selected points form the subset of 10% of data is 
used as training dataset and 4884 records of data which does not 
overlap with training set dataset, selected as the checking data (used 
for validating the model) for both the binary and multi-classifiers. 

The basic idea behind using a checking dataset for model validation 
is that after a certain point in training, the model begins overfitting the 

training dataset. If overfitting does occur, we cannot expect the 
classifier to respond well to other independent datasets. If checking 
data is used for ANFIS training, the final FIS that is associated 
with the minimum checking error will be chosen. 

Table III summarizes the distribution of the samples in the Training 
and Checking dataset for the binary and the multi-classifier. 

Afterward, subtractive clustering method with neighborhood radius 
equal to 0.5 has been chosen to partition the training data to generate 
an FIS structure. All the input MFs are the Gaussian function which 
are specified by four parameters. Then for further fine-tuning and 
adaptation of the MFs, training dataset was used for training ANFIS, 
while the checking dataset was used for validating the model 
identified. The ANFIS architecture used is equivalent to Sugeno 
Fuzzy Model and is the same structure as the one that has been 
explained in section 3. 

The ANFIS used for the binary classification contains 380 nodes 
and a total number of 496 fitting parameters, of which 328 are premise 
parameters and 168 are consequent parameters. The average RMSE 
(Root Mean Squared Error) for the training and checking dataset of 
binary classifier after 50 epochs of learning is 2349.74 and 0.207448, 
respectively. ANFIS used for multi classification hold 328 premise 
parameters and 168 consequent parameters and the RMSE for the 
training and checking dataset after 50 epochs of learning is 10164.7 
and 0.264419, respectively, too. It is unusual to observe that RMSE 
for the training data is larger than the checking data during the training 
process, as is the case here. It seems that it is the result of many 
differences between the number of training and checking samples and 
also the loss of training epochs. As it has been previously mentioned 
in section 3, ANFIS structure has one output. In this paper, the ANFIS 
output specifies the class number of the 41 input featured vector. The 
output of each ANFIS is not necessarily an integer as the class 
number. For this reason, we need to gain an approximate class 
number by rounding off the given number. Γ is the parameter for 
rounding off, which gives us the integer value. Output will be rounded 
based on Γ, which gives us an integer value. If it is equivalent to one 
of the attack's class numbers, then the current connection record is 



 
 

classified as an attack, otherwise the related connection will be 
assumed as normal record. Below, we will investigate the effect of Γ 
on the performance evaluation parameters.  

TABLE III 
DISTRIBUTION OF SAMPLES ON THE TRAINING AND CHECKING DATA 

RANDOMLY SELECTED OF 10% DATA OF KDD CUP 99 DATASET FOR THE 
CLASSIFIERS 

Binary Classifier Multi-Classifier 
Class 

Training Checking Training Checking 

Normal 25000 2500 25000 2500 

Dos 20000 2000 20000 2000 

U2R 40 4 40 4 

R2L 800 80 800 80 

PROBE 3000 300 3000 300 

 48840 4884 48840 4884 

C. Performance Comparison Measures 

Standard metrics that were developed for evaluating network 
intrusion detections are detection rate and false alarm rate. Detection 
rate is computed as the ratio of the number of correctly detected 
attacks to the total number of attacks, while false alarm (false positive) 
rate is computed as the ratio of the number of normal connections 
(that is incorrectly misclassified as attacks) to the total number of 
normal connections. 

Table IV shows detection rate and false alarm rate based on binary 
and multi-classifier for training and checking data after 50 epoch of 
training with Γ = 0.5. 

TABLE IV 
FALSE ALARM RATE AND DETECTION RATE S FOR THE TRAINING AND 

CHECKING DATA 
Classifier Data False Alarm Rate% Detection Rate% 

Training 0.17 96.50 Binary 
Classifier Checking 0.08 96.64 

Training 5.63 98.43 Multi 
Classifier Checking 3.64 99.41 

V. RESULTS 

Two different classifiers have been used in this work. 
TABLE V shows the notation used here after. 

TABLE V 
ABBREVIATIONS USED FOR OUR APPROACHES 

Abbreviation Approach 

B-NFC Binary Neuro-Fuzzy Classifier 

M-NFC Multi Class Neuro-Fuzzy Classifier 

 
Two different types of experiments have been performed here; in 

the first experiment all the records of labeled test dataset (known as 
corrected label dataset) were used as the testing data to evaluate our 
classifiers. The results are shown in Table VI. As it can be seen, our 
classifiers has a good performance at intrusion detections with 
approximately low false alarm rate, although only we have only used 
about fifty thousand records of 10% of the dataset. It is important to 
mention that unlike the methods of comparison in the quoted 
references, here, our test data in the current experiment contains new 
attacks which were not present in the training dataset. In the second 

experiment, we randomly selected 40000 sampled connections from 
the source of the training dataset. To reduce the effects due to random 
sampling, five trails, that does not overlap neither with training set nor 
each others, have been carried out and average of the resulting value 
over 5 trials have been computed.  

TABLE VI 
FALSE ALARM RATE AND DETECTION RATE S FOR THE TEST DATA OF THE FIRST 

EXPRIMENT 
Classifier False Alarm Rate (%) Detection Rate (%) 
B-NFC 0.3 89.43 
M-NFC 3.4 91.14 

 
We compare our classifiers with two different fuzzy algorithms' 

performances proposed in [5] and [2]. Also different algorithms' 
performance exploit at the above papers has been referenced here 
again [16] [17]. 

Our classifier demonstrates better performance in reducing false 
alarm rate and increasing detection rate. Based on the results shown in 
the TABLE VII, it can be easily seen that our approach has an overall 
better performance than the other methods.  

In the rest of this section, we have applied the Receiver Operating 
Characteristic (ROC) analysis to evaluate the performance of our 
classifiers with respect to parameter Γ. To generate the ROC curve, 
we changed Γ to a value between 0 and 0.5 and plotted coordinate 
point (FA, DR)Γ, where FA is the false alarm rate and DR is the 
detection rate [2]. Figure 2 displays ROC curve for the classifiers 
which has been used here with respect to Γ. 

The ROC curve can be used to determine when a classifier has 
good performance. For each curve, the point at the upper left corner 
represents the optimal detection with high detection rate and low false 
alarm rate [4]. If the ROC curve of a classifier 'A' dominates the 
classifier 'B' then classifier 'A' is better than classifier 'B'. The ROC 
curve for the proposed neuro-fuzzy classifiers shows how the 
parameter Γ affects the false alarm rate and detection rate. 

VI. CONCLUSION 

In this paper, we have applied ANFIS as a neuro-fuzzy classifier to 
the intrusion detection methods. Subtractive clustering determines the 
number of rules and MFs with their initial locations. The method used 
here is capable of producing fuzzy rules without the aid of human 
experts. Results of experiments show that these fuzzy rules are 
effective for detecting intrusion in a computer network. Also results 
illustrate the suggested that ANFIS is more appropriate as a binary 
classifier rather than a multi-classifier one. 

Our future work will focus on reducing fuzzy input variables by 
methods of feature selection.  
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TABLE VII 
FALSE ALARM RATE, DETECTION RATE AND COMPLEXITY OF DIFFRENET APPROACHES 
Classifier False Alarm Rate (%) Detection Rate (%) Complexity 
B-NFC 0.13 99.60 O(n) 

M-NFC 4.61 99.90 O(n) 

SRPP [5] 3.58 99.08 O(n) 

EFRID [2] 7 98.96 O(n) 

RIPPER [16] 2.02 94.26 O(n × log2n) 

SMARTSIFTER[17] - 82 O(n2) 

 

 
Fig. 2. ROC curve for the Neuro-Fuzzy classifiers; 0 ≤ Γ ≤ 0.5 
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