

From Edge to Cloud:

Serverless and Intent-Based Approaches in the Sustainable Compute Continuum

Adel N. Toosi

Distributed Systems and **Net**work Applications Laboratory (**DisNet lab.**)
School of Computing and Information Systems
The University of Melbourne

Email: adel.toosi@unimelb.edu.au Homepage: https://adelnadjarantoosi.info/

DisNet Lab

Adel N. Toosi Slide 1/48

Biography

- Associate Professor in Computer Systems, CIS School, University of Melbourne, 2024-
- Senior Lecturer, Faculty of IT, Monash University, 2022-2024
- Lecturer, Faculty of IT, Monash University, 2018-2022
- Postdoctoral Research Fellow, University of Melbourne, 2015-2018
- **PhD**, Computer Science and Software Engineering, 2015
 - Thesis: "On the Economics of Infrastructure as a Service Cloud Providers: Pricing, Markets, and Profit Maximization"
- Research Interests
 - Distributed Systems, Cloud/Fog/Edge Computing, Software-Defined Networking (SDN), Serverless Computing, Smart Systems (Smart Agriculture, Smart Transports, etc) Sustainable IT, Energy Efficiency, and Green Computing, Evs.
 - Focused on **Resource Management** and **Scheduling** in Distributed **Systems**

Outline

- Introduction
- I. Serverless Edge Computing
 - » Con-pi
 - » Performance Evaluation of Serverless Edge
 - » Wattedge
 - » faasHouse
 - » Hedgi
 - » Benchmarking and routing object detection tasks on the edge
- II. Compute Continuum
 - » Intent-based Vehicular Edge Computing
 - » Serverless Vehicular Edge Computing
 - » iContinuum
 - » Empirical Study on Edge-to-Cloud Continuum
 - » IntentContinuum
- Summary

Adel N. Toosi Slide 3/48

I. Serverless Edge Computing

Adel N. Toosi Slide 4/48

Edge Computing

• The issues of cloud

- Cloud data centres reside at a **multi-hop** distance from the sensors and devices
- Data propagation and transmission can cause significant delays
 - » Real-time applications such as autonomous vehicles.
 - » Bandwidth-intensive applications, eg. Video analytics
- **Privacy** concerns
 - » Secure Healthcare Monitoring

• Edge computing:

• A distributed computing paradigm that brings computation and data storage closer to the sources of data, often on the edge of the network.

• Key Points:

- Reduced Latency
- Bandwidth Efficiency
- Enhanced Privacy & Security
- Real-time Processing

Adel N. Toosi Slide 5/48

Challenges of Edge Computing

- In remote area applications (smart farming and forestry)
 - **extreme edge:** electricity arrangements to integrate sensory/actuation systems into the edge computing infrastructure are **tedious** and **costly**.
 - Example:
 - » ARC Linkage Project: Precision Pollination and Honeybees Monitoring

• Solution:

• Battery and energy harvesting (e.g., solar panels)

• Challenge:

• Edge devices rely on renewable energy sources that are subject to energy and load variability which can create an imbalance in their operational availability.

• Solution:

Resource sharing and task offloading

Adel N. Toosi Slide 6/48

Con-Pi: Self-Sustained Edge Computing Framework

R. Mahmud and A. N. Toosi, "Con-Pi: A Distributed Container-based Edge and Fog Computing Framework," in *IEEE Internet of Things Journal*, doi: 10.1109/JIOT.2021.3103053.

Adel N. Toosi Slide 7/48

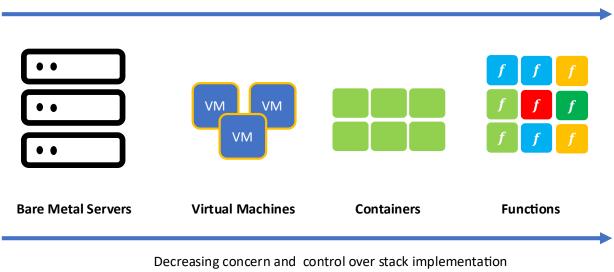
Serverless Edge Computing

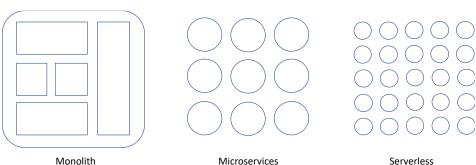
Serverless Computing

- Build applications and services without thinking about the **underlying servers**.
- Focus on pure application code (application logic)
- It runs in **stateless compute containers** that are **event-triggered**
 - » ephemeral (may only last for one invocation), and fully managed by a third party (cloud provider).

WHAT IF I TOLD YOU

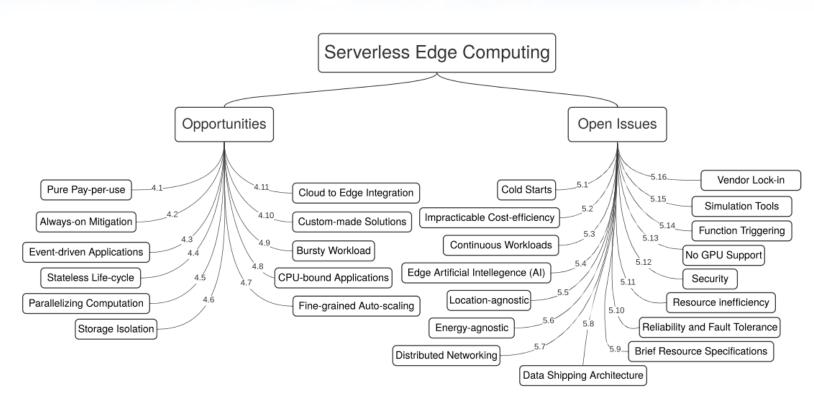
SERVERLESS RUNS ON SERVERS


• One way to think of this is "Functions as a Service" or "FaaS".



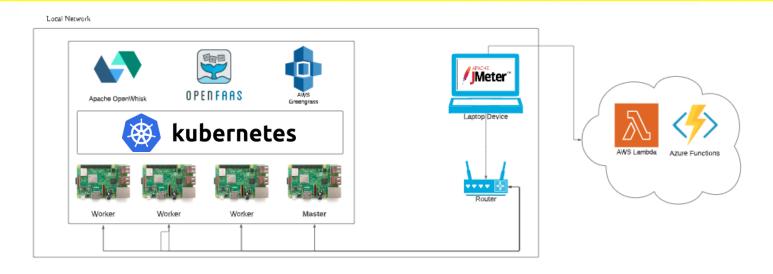
Adel N. Toosi Slide 8/48

Evolution of Serverless


Increasing focus on business logic

Adel N. Toosi Slide 9/48

Our vision on Serverless Edge Computing



Mohammad Sadegh Aslanpour, Adel N. Toosi, Claudio Cicconetti, Bahman Javadi, Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Gill, Raj Gaire, Schahram Dustdar, **Serverless Edge Computing: Vision and Challenges**, *In Australasian Computer Science Week Multiconference (ACSW'21)*, article no 10, Dunedin, New Zealand, 2021, pp. 1-10 doi:10.1145/3437378.3444367,

BEST PAPER AWARD

Adel N. Toosi Slide 10/48

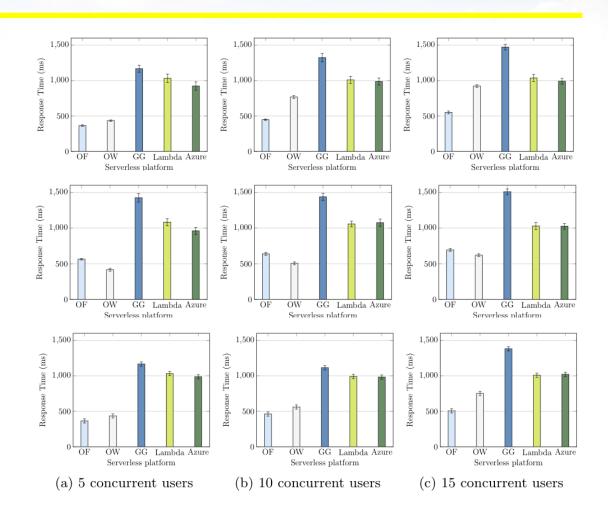
Performance Evaluation of Serverless Frameworks on the Edge

OpenWhisk

AWS Lambda

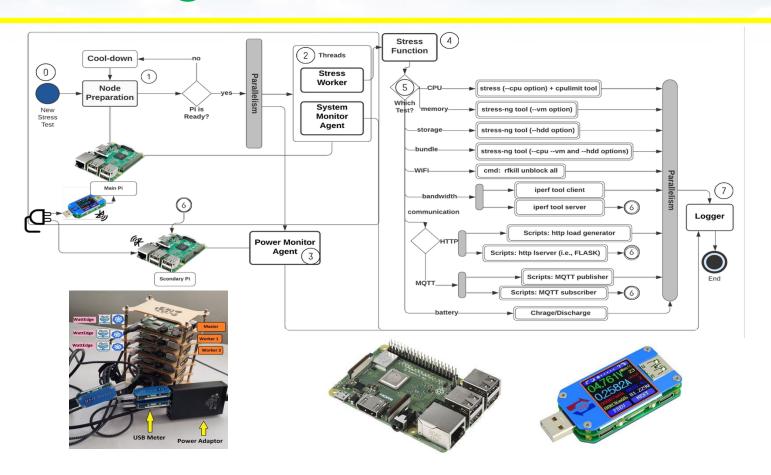
AWS GreenGrass

Azure Functions

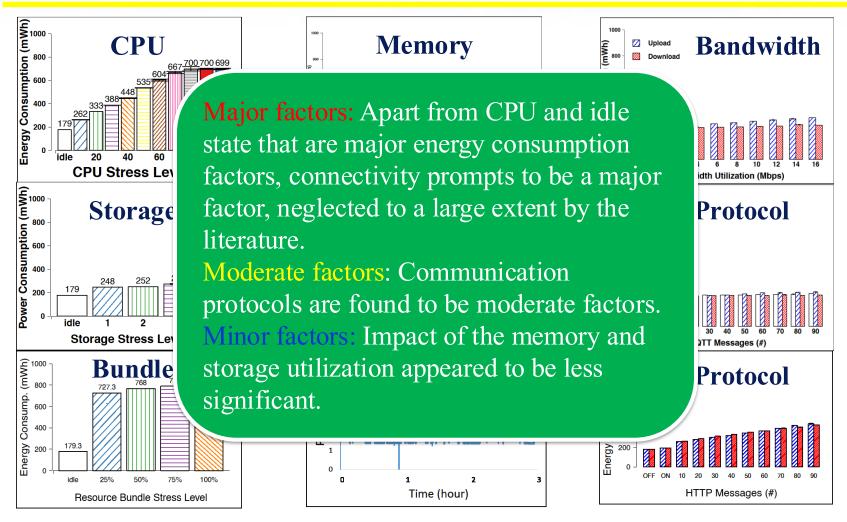

Adel N. Toosi Slide 11/48

Performance Evaluation Results

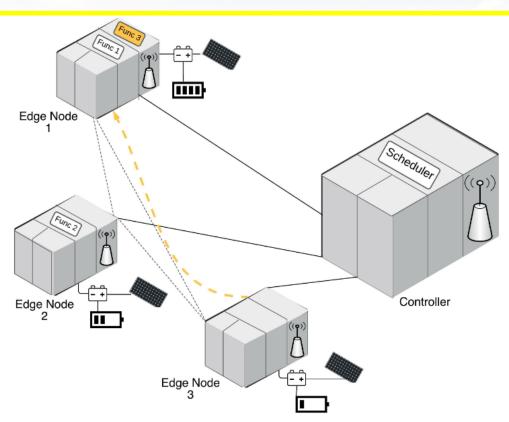
CPU-Intensive


Memory-Intensive

I/O (Disk)-Intensive


Adel N. Toosi Slide 12/48

WattEdge


Aslanpour M.S., Toosi A.N., Gaire R., Cheema M.A. (2021) WattEdge: A Holistic Approach for Empirical Energy Measurements in Edge Computing. In: Hacid H., Kao O., Mecella M., Moha N., Paik H. (eds) Service-Oriented Computing. (ICSOC'21). Lecture Notes in Computer Science, vol. 13121. Springer. BEST PAPER CANDIDATE.

CPU, Memory and Disk

Sustainable Serverless Edge Computing through Energy-aware Resource Scheduling

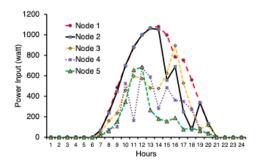
- Support for various hard/soft requirements
- minimize the number of failures for a node
- minimize wasted energy
- maximize the longest time a node is operational.

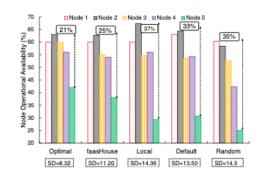
Mohammad Sadegh Aslanpour, Adel N. Toosi, Muhammad Aamir Cheema, and Raj Gaire, **Energy-Aware Resource Scheduling for Serverless Edge Computing**, in the proceedings of 22nd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid'22), pp. 190-199. IEEE, 2022.

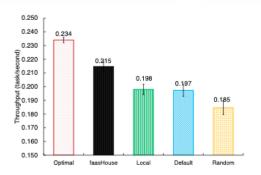
Mohammad Sadegh Aslanpour, Adel N. Toosi, Muhammad Aamir Cheema, and Mohan Chhetri, **faasHouse: Sustainable Serverless Edge Computing through Energy-aware Resource Scheduling**, *IEEE Transactions on Services Computing*, 2023, under review.

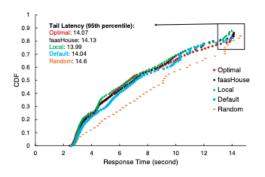
faasHouse

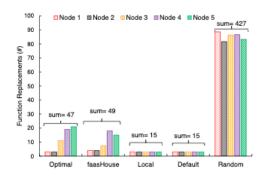
- Scoring
 - Energy, Locality, and Stickiness
- Assignment
 - House Allocation Problem: the problem of assigning houses (nodes) to people (functions) considering people's preferences

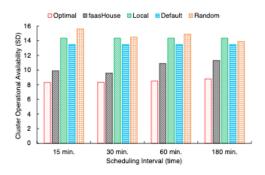

Adel N. Toosi Slide 16/48

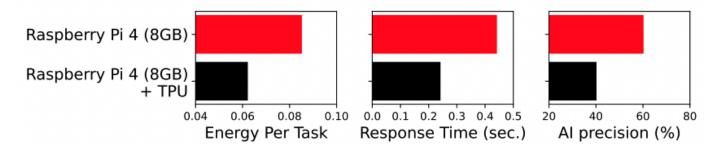

Benchmarks


- Evaluated against to the following benchmarks:
- **Optimal**: This is an offline optimal algorithm which requires the future knowledge of renewable energy input and incomingworkload for each time slot (constrained optimisation problem)
- Local: This baseline algorithm always deploys functions locally. This is worth evaluating to understand the impact of offloading.
- **Default**: This is the default performance-aware scheduler in Kubernetes.
- Random: This randomly places functions across the cluster.
- **Zonal:** The proposed approach in CCGrid paper.


Adel N. Toosi Slide 17/48

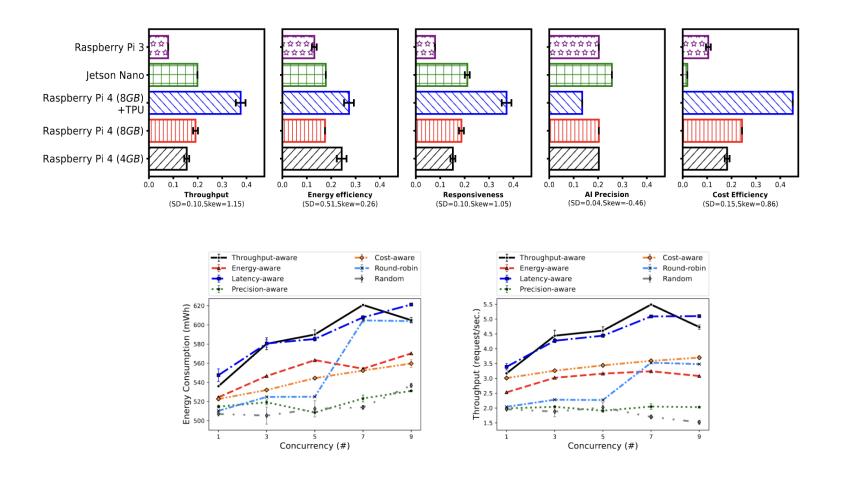

Some Results



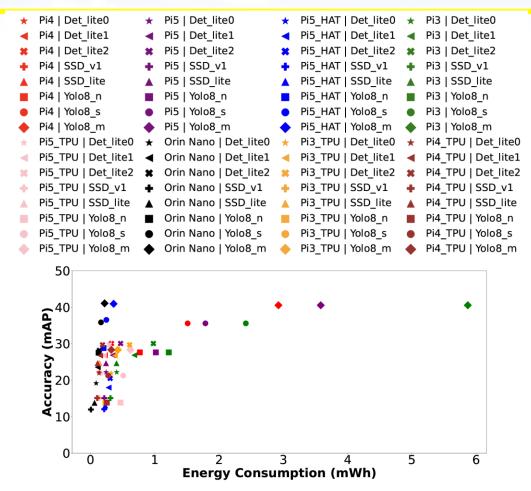


Heterogeneity-aware Resource Scheduler

Motivation:



Mohammad Sadegh Aslanpour, Adel N. Toosi, Muhammad Aamir Cheema, Mohan Chhetri, and Mohsen Amini, Load Balancing for Serverless Edge Computing: A Performance-aware and Empirical Approach, Journal of Future Generation Computer Systems, 2023, CORE A, (R1 Revision).


Adel N. Toosi Slide 19/48

Performance Characterization

Adel N. Toosi Slide 21/48

Benchmarking Object Detection Models on Edge Devices

Daghash K. Alqahtani, Muhammad Aamir Cheema, Adel N. Toosi, Benchmarking Deep Learning Models for Object Detection on Edge Computing Devices, ICSOC 2024,

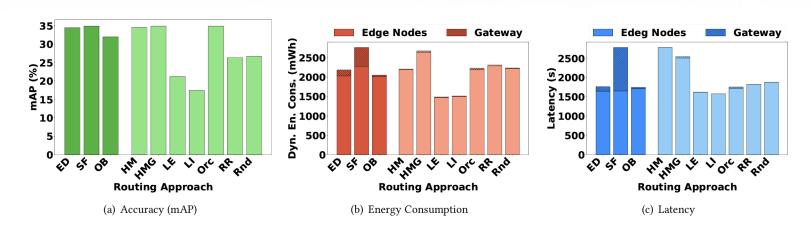
Energy-aware Routing for Object Detection Models at the Edge

Why Adaptive Routing?

- Scene complexity varies (crowded vs. empty)
- \rightarrow High complexity \rightarrow need accurate, energy-hungry models
- Low complexity → lighter models save energy, not as efficient and accurate
- Route requests based on scene difficulty
- Smart trade-off: accuracy where needed, efficiency elsewhere

Daghash K. Alqahtani, Maria A. Rodriguez Hamid Rezatofighi, Muhammad Aamir Cheema, **Adel N. Toosi, ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge**, Submitted to SENSYS, 2026, https://arxiv.org/abs/2507.06011

Adel N. Toosi Slide 23/48


Proposed Routers

We make routing base on the complexity of the image and number of objects.

- Edge Detection (ED): Canny edge detection to count objects; fast but coarse.
- SSD-Based Front-End (SF): Lightweight SSD model at gateway; more accurate but costlier.
- Output-Based (OB): Reuses previous frame's object count; ideal for video, saves compute.

Adel N. Toosi Slide 24/48

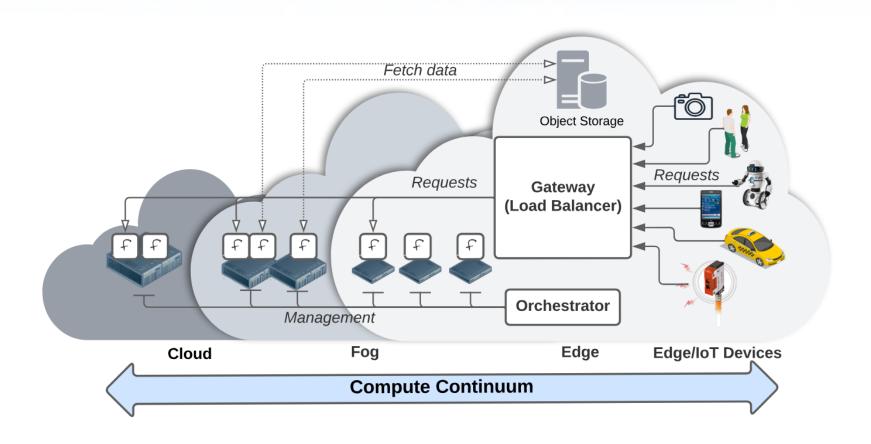
Some Results

Accuracy(mAP), Latency and Dynamic Energy Consumption for proposed routing approaches against baselines using COCO dataset.

Orc=Oracle, RR=Round Robin, Rnd=Random, LE=Lowest Energy, LI=Lowest Inference, HM=Highest mAP without considering Groups, HMG=Highest mAP Per Group, **ED**=Edge Detection, **SF**=SSD-Based Front, **OB**=Output-Based

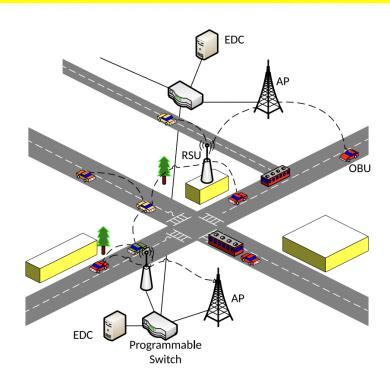
 δ mAP=5.

II. Compute Continuum


"Is this computer fast, or what? You just drilled a hole in the Space-Time Continuum! No biggie, though. Just hit 'Control-Escape-Home' and you'll be back to normal!"

Why Compute Continuum?

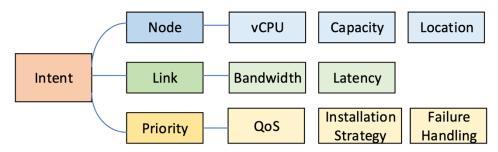
- Cloud alone may not be suitable for all applications
 - For real-time processing or strong privacy protections
- Edge alone is not enough it lacks the scalability and power of cloud
- Bridging Edge, Cloud for seamless computing


Adel N. Toosi Slide 27/48

Compute Continuum

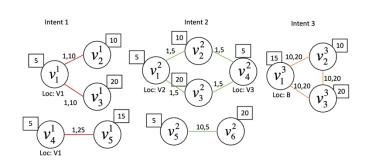
Vehicular Edge Computing Overview

Overview: The automotive industry is one of the fastest-growing industries. In recent years, the increased use of onboard microprocessors such as On-Board Units (OBUs) and sensors technology has led to technological advancements that enabled vehicles to provide various safety and driver assistance-related systems.

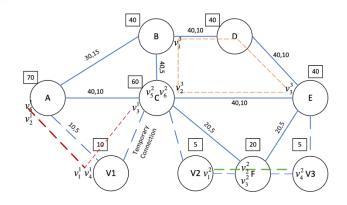


TianZhang He, Adel N. Toosi, Negin Akbari, Muhammed Tawfiqul Islam, and Muhammad Aamir Cheema, **An Intent-based Framework for Vehicular Edge Computing**, *In Proceedings of 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom 2023)*, March. 13 - 17, Atalanta, USA, pp. 121 - 130, doi: 10.1109/PERCOM56429.2023.10099081

Adel N. Toosi Slide 29/48


Background: Intent-Based Networking (IBN)

- Intent-Based Networking:
 - Based on Software-Defined Networking (SDN),
 - was introduced to provide the ability to automatically handle and manage the networking requirements of different applications.
- Motivated by the IBN concept, we propose a novel approach to jointly orchestrate networking and computing resources based on user requirements.
- The proposed solution constantly **monitors** user **requirements** and **dynamically re-configures** the system to satisfy the desired states of the application.



Adel N. Toosi Slide 30/48

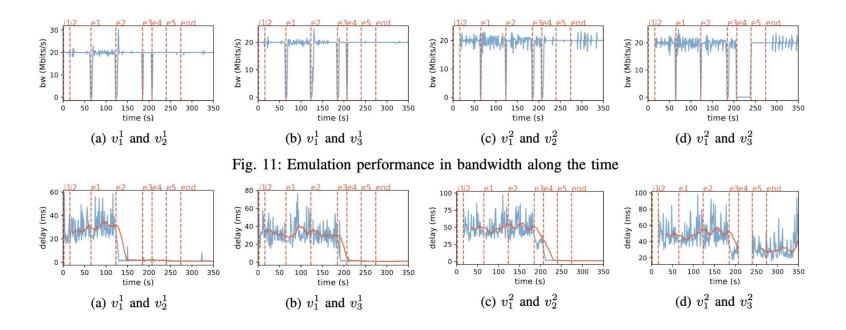
Problem Description

An example of intents and compiled requests

An example of intent installation on the substrate network

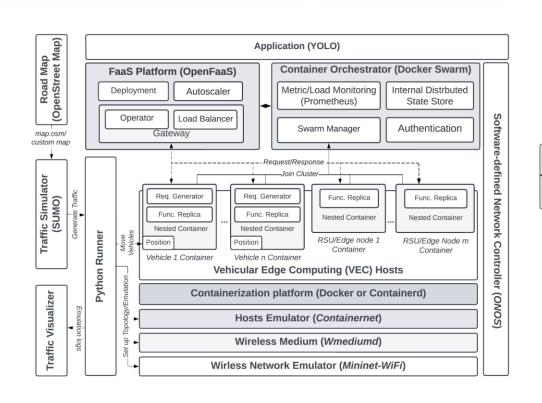
Objectives:

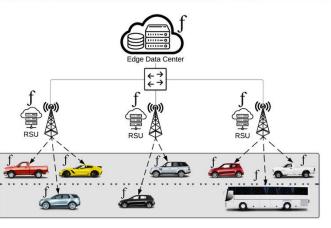
- Maximizes the intent acceptance ratio owing to their priorities
- While efficiently utilizing both computing and networking resources.

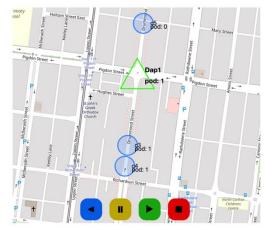

Adel N. Toosi Slide 31/48

Large-scale Simulation configurations

- Real-world taxi GPS dataset in Shanghai (April 1, 2018)
- Locations of base stations from Shanghai Telecom


Adel N. Toosi Slide 32/48


Emulation/Small-scale Prototype



Adel N. Toosi Slide 33/48

Serverless Vehicular Edge Computing

Alam F, Toosi AN, Cheema MA, Cicconetti C, Serrano P, Iosup A, Tari Z, Sarvi A. Serverless Vehicular Edge Computing for the Internet of Vehicles. *IEEE Internet Computing*. vol. 27, no. 4, pp. 40-51, July-Aug. 2023, doi: 10.1109/MIC.2023.3271641.

Adel N. Toosi Slide 34/48

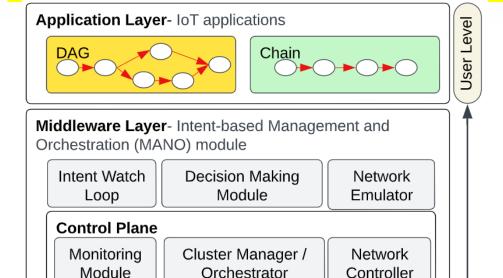
Challenge: Testing Applications & Experimentation

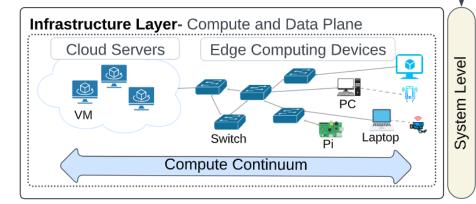
• A thorough **testing** of applications leveraging the compute continuum and **experimentation** is challenging before deployment in a production environment

• Solutions:

- Simulation
 - » Realism limitations
 - » Accuracy concerns
 - » Complexity of network simulation
- Emulation
 - » More accurate testing
 - » Reduced deployment risks
 - » Improved system reliability

iContinuum


We have fully automated the setup of iContinuum using Ansible, making it incredibly user friendly. This allows iContinuum users to set up a complex edge-to-cloud continuum and application orchestration environment without getting into the complexities of all the proposed tools. All associated codes are available in our GitHub repository


https://github.com/disnetlab/iContinuum

N. Akbari, **A. N. Toosi**, J. Grundy, H. Khalajzadeh, M. S. Aslanpour and S. Ilager, *iContinuum: An Emulation Toolkit for Intent-Based Computing Across the Edge-to-Cloud Continuum*, 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), Shenzhen, China, 2024, pp. 468-474, doi: 10.1109/CLOUD62652.2024.00059.

iContinuum

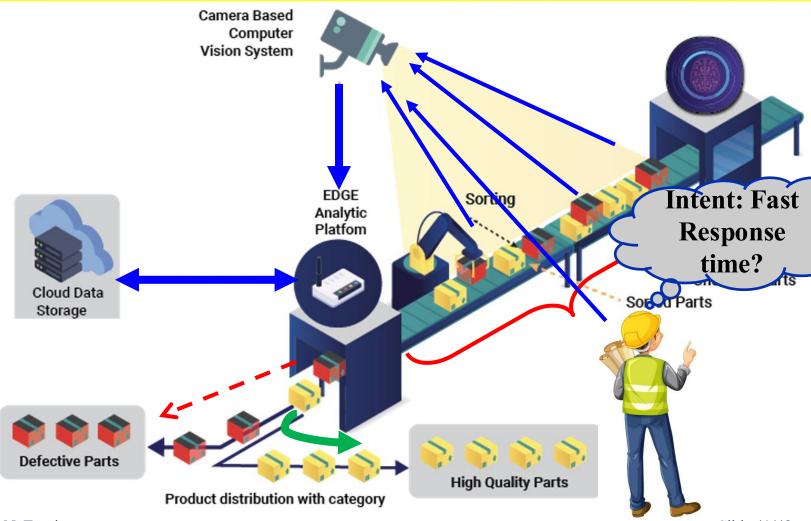
https://github.com/disnetlab/iContinuum

Adel N. Toosi Slide 37/48

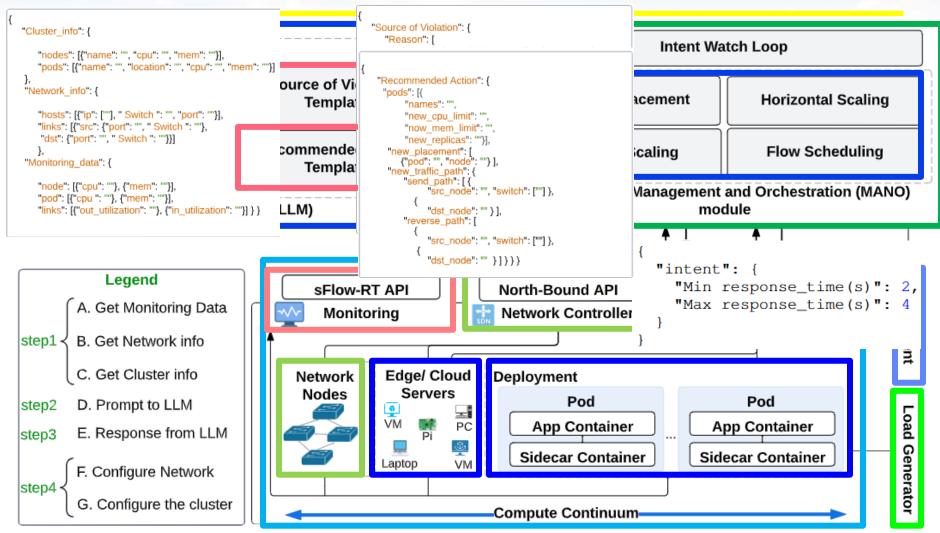
Another Challenge

- Resource Management as a key challenge
 - Diverse computing resources (smartphones, IoT sensors, edge servers, cloud data centers)
 - Complex infrastructure management
 - Efficient deployment of distributed applications
- Resource management in the Compute Continuum is challenging (often falling into NP-hard or NP-complete problem classes)
 - heuristic
 - meta-heuristic

Adel N. Toosi Slide 38/48

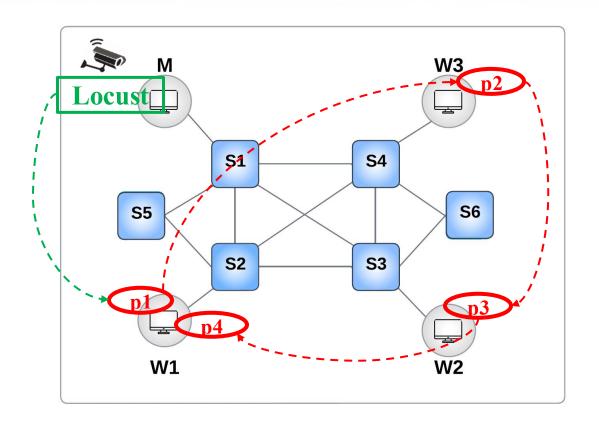

Aim (LLM-as-a-Scheduler)

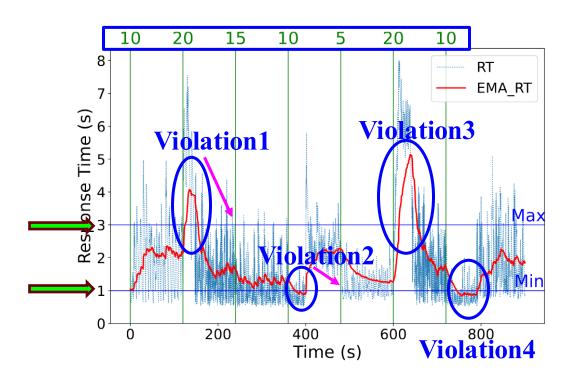
- Using general-purpose LLMs like ChatGPT
- Creating intent-driven resource management for Compute Continuum
 - LLMs analyze large data sets to address resource management challenges
 - To reduce manual work and complex rules
 - LLMs enable dynamic, context-aware resource management


N. Akbari, J. Grundy, A. Cheema, Adel N. Toosi, IntentContinuum: Using LLMs to Support Intent-Based Computing Across the Compute Continuum, IEEE International Conference on Web Services (ICWS 2025), Helsinki, Finland, 2025,.

Adel N. Toosi Slide 39/48

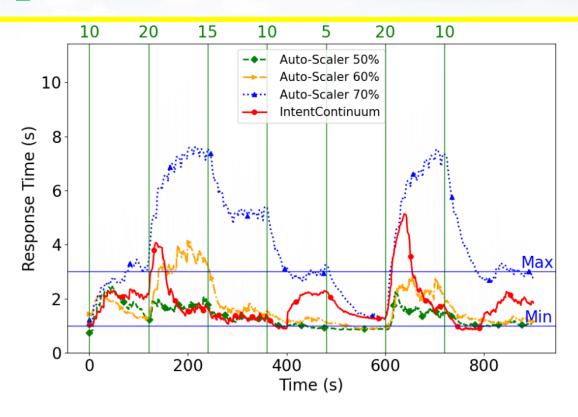
Motivation


IntentContinuum: Proposed Architecture


Adel N. Toosi

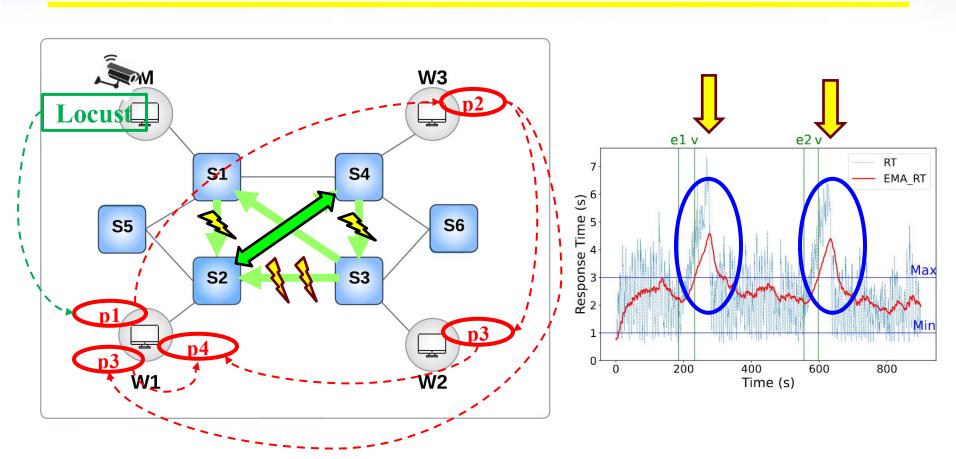
Slide 41/48

A sample Scenario



Computing Experiment

Adel N. Toosi Slide 43/48


Comparison to Kubernetes HPA

Metrics	IntentContinuum	Autoscaler		
		70%	60%	50%
Intent Satisfaction%	85%	43%	79.5%	82.5%
Total Amount of Violated Time (s)	143	509	184	157

Adel N. Toosi Slide 44/48

Networking Experiment

Adel N. Toosi Slide 45/48

Discussions

> Strengths:

- Can dynamically adapt to varying load levels while maintaining the application's response (**Vertical/horizontal scaling**)
- **best balance** between intent satisfaction and resource utilization compared to various Kubernetes
- address network issues such as link congestion or link failures by dynamically implementing flow scheduling or pod replacements
- Minimizes the intent violations.

Limitations:

- Dependence on models
- Limited Transparency and Clarity of LLM Recommendations
- Scalability (context limits) and Processing Overhead
- Financial implications

Adel N. Toosi Slide 46/48

Summary

- Serverless Edge Computing: Overview and its significance in modern distributed systems
 - Showcased some ongoing research in Serverless Edge Computing in DisNet lab
- Compute Continuum: Concept introduction and its impact on edge-to-cloud integration
 - Intent-based and Serverless Vehicular Edge Computing
 - iContinuum: a tool for emulating edge-to-cloud continuum
 - **intentContinuum**: LLM as a scheduler for DevOps across the compute continuum

Adel N. Toosi Slide 47/48

E: <u>adel.toosi@</u>unimelb.edu.au

W: http://adelnadjarantoosi.info

P: (03 90354322 Office)

